WORLDWIDE

WorldWide Electric Corporation
3540 Winton Place
Rochester, NY 14623 USA
Phone: 800-808-2131
www.worldwideelectric.net

WORLDDRIVE WD4X

Quick Start Guide

This Quick Start Guide is intended to allow a user to become quickly familiar with the basic operations of the WorldDrive 4X (WD4X).

For all other configurations, please refer to the specific setup and configuration instructions available on the WorldWide Electric website: wwec.co/WD4X

WD4X Quick Start Guide

Safety Information

- NOTE: This Quick Start Guide is intended for users with basic knowledge of electricity and electric devices. If you are unfamiliar with the installation and operation of Variable Frequency Drives or are unsure about any procedure, please contact qualified personnel for installation assistance.
- Do not open the cover of the Variable Frequency Drive (VFD) while it is on or energized. Do not operate the VFD while the cover is open. Exposure of high voltage terminals or charging area to the external environment may result in an electric shock. Do not remove any covers or touch the internal circuit boards (PCBs) or electrical contacts on the product when the power is on or during operation. Doing so may result in serious injury, death, or serious property damage.
- Do not open the cover of the VFD even when the power supply to the VFD has been turned off unless it is necessary for maintenance or regular inspection. Opening the cover may result in an electric shock even when the power supply is off.
- The equipment may hold charge long after the power supply has been turned off. Use a multimeter to make sure that there is no voltage before working on the VFD, motor or motor cable.
- This equipment must be grounded for safe and proper operation.
- Do not supply power to a faulty VFD. If you find that the VFD is faulty, disconnect the power supply and have the VFD repaired or replaced.
- The VFD becomes hot during operation. Avoid touching the VFD until it has cooled to avoid burns.
- Do not allow foreign objects, such as screws, metal chips, debris, water, or oil to get inside the VFD. Allowing foreign objects inside the VFD may cause the VFD to malfunction or result in a fire.
- Do not operate the VFD with wet hands. Doing so may result in electric shock.

WD4X Quick Start Guide

Power and Control Input and Output Wiring Diagram

WD4X Quick Start Guide

Keypad Functions

Display	Term	Function Description	
nus	RUN Key	Run command	
	STOP/RESET Key	STOP: Stop command during operation, RESET: Reset command when a fault occurs.	
	UP Key	Used to scroll through codes or to increase a parameter value	
	DOWN Key	Used to scroll through codes or to decrease a parameter value	
\leqslant	Left Key	Used to jump to other parameter groups or move the cursor to the left	
	Right Key	Used to jump to other parameter groups or move the cursor to the right	
EET	Enter Key	Used to set a parameter value or to save the changed parameter value	
ssc	Escape Key	Used to cancel the Jog or Remote/Local change key or when editing	
FWD	Forward Run	Illuminated during forward run	Flickering when a fault occurs
REV	Reverse Run	Illuminated during reverse run	
RUN	RUN Key	Illuminated during operation (flickering during acceleration/deceleration)	
SET	Setting	Illuminated during parameter setting/Flickering when the ESC key is operating as a multi-key	
7-Segment	Current Value	Indicates operating conditions and parameter data	

WD4X Quick Start Guide

Keypad Functions (continued)

| Group Name |
| :---: | :---: | :---: |
| Drive Group
 (Drive) | | The most basic parameters required for operation such as a target frequency, acceleration/ |
| :--- |
| Basic Function Group |
| (Basic) |

WD4X Quick Start Guide

Keypad Functions (continued)

How to move between groups in the first code of each group:

WD4X Quick Start Guide

Keypad Functions (continued)

Protective functions for output current and input voltage:

Display	LCD Indication	Type	Description
H16	Over Load	Latch	Displayed when motor overload protection is selected and the load exceeds the set value. It works only if Pr .20 is set as a value other than 0 .
116	Under Load	Latch	Displayed when the under-load protection function is selected and the motor load is below the set normal duty level. It works only if Pr. 27 is set as a value other than 0 .
HLE	Over Current1	Latch	Displayed when the drive output current rises above 200% of rated current.
Nut	Over Voltage	Latch	Displayed when the voltage of the DC circuit increases above the specified value.
cut	Low Voltage	Level	Displayed when the voltage of the DC circuit decreases below the specified value.
LuE	Low Voltage2	Latch	Displayed when the voltage of the DC circuit decreases below the specified value when operating the drive.
F6\%	Ground Trip	Latch	Displayed when current is flowing above the specified value because of a ground fault at the drive output stage. The ground fault detection current is different for each drive capacity.
ELS	E-Thermal	Latch	Prevents overheating when operating a motor in overload for an extended time period and operates according to inverse time characteristics. It works only if Pr. 40 is set as a value other than 0 .
972	Out Phase Open	Latch	Displayed when any output phase to the 3 -phase motor is open circuit. It works only if bit 1 of Pr. 05 is set as 1 .
187	In Phase Open	Latch	Displayed when any output phase to the 3 -phase motor is open circuit. It works only if bit 2 of Pr. 05 is set as 1.
1 HL	Drive OLT	Latch	Inverse time thermal property protection function for protecting the drive from overheating. The criteria is $150 \%, 1$ minute, $200 \%, 4$ seconds based on the drive rated current. The $200 \%, 4$ seconds is different for each drive capacity.
nit	No Motor Trip	Latch	Displayed when a motor is not connected when operating the drive. It works only if Pr. 31 is set as 1 .

Protective Functions by the keypad and option:

Keypad Functions (continued)

Protective functions by internal circuit faults and external signals:

Display	LCD Indication	Type	Description
HHE	Over Heat	Latch	A fault occurs if the temperature of the drive heat sink rises above the specified value.
VF^{2}	Over Current2	Latch	A fault occurs if the DC unit in the drive detects a shor-circuit current value.
54	External Trip	Latch	Indicates that a fault has occurred to wiring connected to a multi-function terminal that has been configured as 'External trip' (Data code 4 set in function IN 65 ~71)
6	BX	Level	Indicates that a signal has been received to a multi-function terminal that has been configured as ' BX Base Block' (Data code 5 set in function $\operatorname{IN} 65 \sim 71$)
M11	H/W-Diag	Fatal	There is an internal fault on the memory (EEPRom), analog-digital corverter output (ADC Off Set), and CPU malfunction (Watch Dog-1, Watch Dog-2) etc. in the drive. - EEP Err: There is an internal fault when reading/writing parameters due to KPD EEP Rom damage. -ADC Off Set: There is a fault with the internal current sensing circuit.
net	NTC Open	Latch	This fault occurs if an error is detected in the temperature detecting sensor of the power semiconductor (IGBT).
FR	Fan Trip	Latch	This fault occurs if a cooling fan error is detected. It works if Pr. 79 is selected as 0 .
01	Pre-PID Fail	Latch	While operating Pre-PID by setting a function between AP.34~36, if the control valuelPID feedbacklis continuously entered below the set value, this fault is displayed.
48	Ext-Brake	Latch	This error can happen when operating external brake signals and any of the multi-function input terminals have been configured accordingly. If the drive output current at starting is held at less than Ad-41 level this fault is output. Set one of OU-31, 32 as no. 35 BR Control.
55	Safety A(B) Err	Level	This error occurs if a fault with the safety inputs occur. If either input A or B is missing, the drive will display this fault code.

Fault recovery:

Display	Type	Cause	Solution
Tit	Over Load	Load is larger than the motor rating. The value set in the overload fault level (Pr.21) is too small.	Increase the capacity of motor and drive. Increase the set value of the overload fault level
112	Under Load	There is a problem in the connection between the motor and the load. The normal duty level (Pr. 29, 30) is set larger than minimum load of the system.	Decrease the capacity of motor and drive. Lower the set value of the light load level.
MEL	Over Current1	The acceleration/deceleration is too short for the inertia of load(GD2). The drive load is larger than the rating. The drive output is applied when the motor is idling. Motor mechanical brake is on.	Set the acceleration/deceleration time longer. Replace with an drive with large capacity. Operate after the motor stops or use the speed search function. Check the mechanical brake.

Keypad Functions (continued)

Display	Type	Cause	Solution
nut	Over Voltage	The deceleration time is too short compared to the inertia of load (GD2). A regenerative load is connected to the drive output. AC input voltage is high.	Set the deceleration time longer. Use a braking resistor. Check whether the $A C$ input voltage is above the specified value.
$i v i$	Low Voltage	AC input voltage is low. Larger load than the power capacity is connected to the power system. (Welding machine or motor line-start etc.) A device on the power input side of the drive is defective.	Check whether the $A C$ input voltage is below the specified value. Increase the power capacity. Replace the electromagnetic contactor.
405	Low Voltage2	AC input voltage is lowered during operation. There is an input open phase under the low AC input voltage condition. A device on the power input side of the drive is defective.	Check whether the AC input voltage is below the specified value. Check the input wiring. Replace the electromagnetic contactor.
FEL	Ground Trip	The drive output wire has a ground fault. The motor insulation has failed.	Investigate the drive output terminal wiring. Replace the motor.
E6H	E-Thermal	The motor is overheated. The drive load is larger than the rating. Electronic thermal level is set low. The drive has been operating at low speed for a long time.	Reduce the load or the operating frequency. Increase the drive capacity. Set the appropriate electronic thermal level. Force cool the motor.
976	Out Phase Open	Bad connection or open circuit at an output device. Output wiring \& defect occurred.	Check for faulty/open device on the drive output device. Check the output wiring.
109	In Phase Open	Bad connection on a device on the drive input side. Input wiring defect occurred. Consider replacing the drive DC unit condenser.	Check the device at the drive input side. Check the input wiring. Replace the drive DC unit condenser. Contact the nearest service center.
176	Drive OLT	Load is larger than the drive rating. The torque boost amount is too large.	Increase the capacity of motor and drive. Reduce the torque boost amount.
nHE	Over Heat	There is a problem with the cooling system. The drive has been used for a longer time than the replacement period of cooling fan. Ambient temperature is high.	Check whether there is a foreign substance in the vent such as the air inlet and outlet. Replace the drive cooling fan. Keep the temperature around the drive below $50^{\circ} \mathrm{C}$.
NEC	Over Current2	The drive output wiring is short-circuited. There is a problem in the drive power semiconductor (IGBT).	Investigate the drive output terminal wiring. The drive cannot be operated. Contact the nearest service center.
mit	NTC Open	Ambient temperature is too low. There is a problem in the temperature sensor inside the drive.	Operate the drive at a place where ambient temperature is above $-10^{\circ} \mathrm{C}$. Contact the nearest service center.
FRn	FAN Lock	Foreign substances have entered into the drive vent where the fan is located. Consider replacing the drive cooling fan.	Check the air inlet and outlet. Replace the drive cooling fan.
FRn	IP66 FANTTip	The fan connector is not connected. Consider replacing the drive cooling fan.	Connect the fan connector. Replace the drive cooling fan.

WD4X Quick Start Guide

Keypad Functions (continued)

An example of changing the acceleration time from 5.9 second to 16.0 second:

- Indicate the first code information of the operation group.
- Press the UP key (\mathbf{A})

1 Flikering when modifying a parameter is for asking whether you are going to enter the value. When pressing the enter key (ENT) at this step, the input is completed. If you do not want to enter the modified value, you can press the lett, right, up or down keys ($\mathbf{(})(\mathbf{v})(\mathbf{U}) \mid \mathbf{v})$ except the enter key (ENT) in the ON condtion to cancel the input.

How to Move between Codes in the operation group

Common Drive Setup Parameters

Group Name	Description See drive manual for complete configuration capabilities	Default Value	Value Range	New Value
	Operation Group (use ^ or v arrows keys) best to begin from Hz displayed			
0.00	Frequency speed reference on keypad (0.00 before a new value is entered)	0.00	Min/Max	
ACC	Accel Time in seconds	20.0	0-600.0	
dEC	Decel Time in seconds	30.0	0-600.0	
dru	Command Source: $\mathbf{0}=$ Keypad; $\mathbf{1}=$ FX/RX1; $\mathbf{2}=$ FX/RX2; $\mathbf{3}=$ Int 485; $\mathbf{4}=$ Field bus	1	0-5	
	FX/RX are hardwire terminal blocks for external switch connections			
Frq	Frequency Setting Method: $\mathbf{0}=$ Keypad1; $\mathbf{2}=\mathrm{V} 1 ; \mathbf{4}=\mathrm{V} 2 ; \mathbf{5}=\mathrm{I} 2 ; \mathbf{6}=\mathrm{Int485;} \mathbf{8}=$ FldBus	0	0-16	
drC	Forward or Reverse control: F = Forward ; $\mathbf{r}=$ Reverse	F	F-r	
dr	Drive Group (use < or > arrows keys) best to begin from Hz displayed			
dr09	Control Mode: 0 = V/F; $\mathbf{2}=$ Slip Comp; $4=$ IM Sensorless; $\mathbf{6}=$ PM Sensorless	0	0-6	
dr14	Motor HP size		.5-30	
dr15	Torque Boost: $\mathbf{0}=$ Manual ; $\mathbf{1}=$ Auto $\mathbf{1 ; ~} \mathbf{2}=$ Auto 2	0		
dr18	Base Frequency:	60.00	$30-400 \mathrm{~Hz}$	
dr19	Start frequency	0.50	$0-10.00 \mathrm{~Hz}$	
dr20	Maximum frequency: Range of 40.00 to 400.00 Hz	60.00	$40-400.00 \mathrm{~Hz}$	
dr21	$\mathrm{Hz} / \mathrm{RPM}$ Select: $\mathbf{0}=\mathrm{Hz}$ Display and $\mathbf{1}=$ RPM Display	0	0-1	
dr85	Parameter Read			
dr86	Parameter Write			
dr89	Changed Parameters: $\mathbf{0}=\mathrm{No} ; \mathbf{1}=\mathrm{Yes}$			
dr90	ESC Key functions: $\mathbf{0}=$ Return; $\mathbf{1}=\mathrm{JOG} ; \mathbf{2}=$ Local $/$ Remote	2	0-2	
dr92	Parameter Save: $\mathbf{0}=$ No; $\mathbf{1}=$ Yes	0	0-1	
dr93	Parameter initialize: $\mathbf{0}=\mathrm{No} ; \mathbf{1}=\mathrm{All} \mathrm{Grp} ; \mathbf{2}=\mathrm{Dr} ; \mathbf{3}=\mathrm{bA} ; \mathbf{4}=\mathrm{Ad} ; \mathbf{5}=\mathrm{Cn} ; \mathbf{6}=\mathrm{In} ; \mathbf{7}=\mathrm{OU}$	0	0-16	
	Factory default controlled by dr93			
XX	Basic Group			
ba4	Command Aux Src: $\mathbf{0}=$ Keypad; $\mathbf{1}=\mathrm{Rx} / \mathrm{Rx}-1 ; \mathbf{2}=\mathrm{Fx} / \mathrm{Rx} 2 ; 3=$ Int 485	1	0-4	
ba5	Freq 2nd Source: $\mathbf{0}=$ Keypad 1; $\mathbf{2}=\mathrm{V} 1 ; \mathbf{4}=\mathrm{V} 2 ; \mathbf{5}=\mathrm{I} 2 ; 9=\mathrm{Int} 485$	0	0-16	
bA7	V/F Pattern: $\mathbf{0}=$ Linear; $\mathbf{1}=$ Square; $\mathbf{2}=$ User V/F; $\mathbf{3}=$ Square 2	0	0-3	
bA9	Time scale for Ramp: $\mathbf{0}=0.01 \mathrm{sec} ; \mathbf{1}=0.1 \mathrm{sec} ; \mathbf{2}=1 \mathrm{sec}$	0	0-2	
bA10	Base frequency: $\mathbf{0}=60 \mathrm{~Hz} ; \mathbf{1}=50 \mathrm{~Hz}$ (input power freq)	0	60/50 Hz	
bA11	Motor pole number (total poles - NOT pole pairs)	4	2~48	
bA13	Motor nameplate Full Load Amps			
bA14	Motor No Load Current in Amps (typical value of 20-40\% of FLA)			
bA15	Motor rated voltage: VFD model specific		230/460V	
bA19	VFD input power voltage		230/460V	
bA20	Auto tuning: $\mathbf{0}=$ None; $\mathbf{1}=$ All Rotation; $\mathbf{2}=$ All Static; $\mathbf{3}=$ Rotate Lsigma; $\mathbf{6}=$ Static	0	0~6	
Ad	Advanced Group			
Ad1	Acc Pattern: 0 Linear and $\mathbf{1}=\mathrm{S}$-Curve	0	0-1	
Ad2	Decel Pattern: $\mathbf{0}=$ Linear and $\mathbf{1}=\mathrm{s}$-Curve	0	0-1	
Ad8	Stop mode: $\mathbf{0}$ = Decel; $\mathbf{1}=$ DC Brake; $\mathbf{2}=$ Free Run; $\mathbf{3}=$ Resv; $\mathbf{4}=$ Power braking	0	0-4	
Ad9	Run Prevent: $\mathbf{0}=$ None; $\mathbf{1}=$ FWD Prevent; $\mathbf{2}=$ REV Prevent	0	0-2	
Ad24	Frequency limit: $\mathbf{0}=$ No and $\mathbf{1}=$ Yes	0	0-1	
Ad25	Frequency low limit: 0.0 to high limit	0.50	0-400 Hz	
Ad26	Frequency high limit: minimum frequency to maximum frequency	60.00	$0.1-400 \mathrm{~Hz}$	
Ad64	Cooling fan control: $\mathbf{0}=$ During Run; $\mathbf{1}=$ Always On; $\mathbf{2}=$ Temp Control	0	0-2	
Ad74	Regen Avoidance Select: $\mathbf{0}=$ NO; $\mathbf{1}=$ YES	0	0-1	
Ad75	Regen Avoidance Level: DC bus voltage level	700	300-800	
	240 v AC Line (range 335-350vDC) or 480 v AC Line (range 690-715vDC)			
Ad76	Comp Frequency Limit: usually good to set at 60.00 Hz Max	1.00	$0-60.00 \mathrm{~Hz}$	
Ad77	Regen Avoidance P Gain: Range of 0.0 to 100.0\%	50	0.0-100.0\%	
Ad78	Regen Avoidance I Gain: Range of 20 to 30,000 mili-seconds	500	20-30000ms	
Ad80	Fire Mode Select: $\mathbf{0}=$ None; $\mathbf{1}=$ Fire Mode; $\mathbf{2}=$ Fire Mode Test	0	0-2	

Note: Shaded areas above denote most frequently used parameters

Common Drive Setup Parameters (continued)

Group Name	Description See drive manual for complete configuration capabilities	Default Value	Value Range	New Value
	Control Group			
Cn04	Carrier Frequency Select in kHz	2 or 3 kHz	$1.0-15.0 \mathrm{kHz}$	
Cn70	Speed Search modes: $\mathbf{0}=$ Flying Start-1; $\mathbf{1}=$ Flying Start-2	1		
Cn71	Speed Search: affects restart after power interruption: Also Ad10 $=1$	b0000		
	Input Terminal Group			
	Input selections are typically assignable for digital inputs P1 thru P5			
In65	P1 Define Digital input 1: $\mathbf{0}=$ None; $\mathbf{1}=\mathrm{FX} ; \mathbf{2}=\mathrm{RX} ; \mathbf{3}=$ RST; $\mathbf{4}=$ Ext Trip; $\mathbf{5}=\mathrm{BX} ; \mathbf{6}=\mathrm{Jog}$	1	0-52	
In66	P2 Define Digital input 2:7 Speed L; $\mathbf{8}=$ Speed $M ; 9=$ Speed $H ; 13=$ Run Enable	2	0-52	
In67	P3 Define Digital input 3: $\mathbf{1 4}=3$-wire; $\mathbf{1 5}=2$ nd Source; $\mathbf{1 7}=$ Up; $\mathbf{1 8}=$ Down	5	0-52	
In68	P4 Define Digital input 4: $\mathbf{2 3}=$ Open Loop; $\mathbf{2 6 = 2 n d ~ M o t o r ; ~} \mathbf{3 4}=$ Pre-Excite	3	0-52	
In69	P5 Define: Digital input 5: $\mathbf{3 8}$ = Timer in; $\mathbf{4 6}$ = Fwd Jog; $\mathbf{5 0}=$ User Seq; $\mathbf{5 1}=$ Fire Mode	7	0-52	
In90	Digital Input status: for troubleshooting (dependent upon NO/NC contact)	0	0-1	
	Output Terminal Group			
	Ouput selections are typically assignable for digital outputs OU31 thru OU35			
OU1	AO1 assignment: $\mathbf{0}=$ Freq; $\mathbf{1}=$ Out Current: $\mathbf{2}=$ Out Volt; $\mathbf{3}=\mathrm{DC} \mathrm{Bus;} \mathbf{4}=\mathrm{TQ} ; \mathbf{5}=\mathrm{Pwr}$	0	0-15	
OU7	AO2 assignment: $\mathbf{0}=$ Freq; $\mathbf{1}=$ Out Current: $\mathbf{2}=$ Out Volt; $\mathbf{3}=\mathrm{DC} \mathrm{Bus;} \mathbf{4}=\mathrm{TQ} ; \mathbf{5}=\mathrm{Pwr}$	0	0-15	
OU31	Relay 1: $\mathbf{0}=$ None; $\mathbf{1}=$ FDT1; $\mathbf{5}=\mathrm{OL} ; \mathbf{7}=$ Under Load; $\mathbf{9}=$ Stall; $\mathbf{1 0}=\mathrm{OV} ; \mathbf{1 1}=\mathrm{UV}$	0	0~40	
OU32	Relay 2: $\mathbf{0}=$ None; $\mathbf{1}=$ FDT1; $\mathbf{5}=\mathrm{OL} ; \mathbf{7}=$ Under Load; $\mathbf{9}=$ Stall; $\mathbf{1 0}=\mathrm{OV} ; \mathbf{1 1}=\mathrm{UV}$	0	0~40	
OU33	Q1 Open Collector Output Define: $\mathbf{0}=$ None; $\mathbf{1 4 = R u n ; ~} \mathbf{2 2}=$ Ready	14	0~40	
OU34	Relay 3: $\mathbf{0}=$ None; $\mathbf{1}=$ FDT1; $\mathbf{5}=\mathrm{OL} ; \mathbf{7}=$ Under Load; $\mathbf{9}=$ Stall; $\mathbf{1 0}=\mathrm{OV} ; \mathbf{1 1}=\mathrm{UV}$	0	0~40	
OU35	Relay 4: $\mathbf{0}=$ None; $\mathbf{1}=$ FDT1; $\mathbf{5}=\mathrm{OL} ; \mathbf{7}=$ Under Load; $\mathbf{9}=$ Stall; $\mathbf{1 0}=\mathrm{OV} ; \mathbf{1 1}=\mathrm{UV}$	0	0~40	
OU41	Digital Output status: troubleshoot: $\mathbf{0}=$ None; $\mathbf{1}=$ FDT-1; $\mathbf{2}=$ FDT2; $\mathbf{3}=$ FDT3; $\mathbf{4}=$ FDT4	0	00-11 bit	
Cm	Communication Group			
AP	Application Group			
AP1	App Mode: $\mathbf{0}=$ None; $\mathbf{1}=$ Reserved; $\mathbf{2}=$ Process PID	0	0-2	
AP16	PID Output	0.00	PID	
AP17	PID Reference Value	0.00	PID	
AP18	PID Feedback Value	0.00	PID	
AP19	PID Reference Setpoint	50.00	\%	
AP20	PID Reference Source: $\mathbf{0}=$ Keypad; $\mathbf{1}=\mathrm{V} 1 ; \mathbf{3}=\mathrm{V} 2 ; 4=\mathrm{I} 2 ; \mathbf{5}=\mathrm{Int} 485$	0	0-15	
AP21	PID F/B Source: $\mathbf{0}=\mathrm{V} 1 ; \mathbf{2}=\mathrm{V} 2 ; 3=\mathrm{I} 2 ; 4=\mathrm{Int} 485$;	0	0-14	
AP22	PID P-Gain	50.0	\%	
AP23	PID I-Time	10 sec	0-200.0 sec	
AP29	PID Limit Hi	60.00 Hz	-/+ 300.00 Hz	
AP30	PID Limit Low	$-60.00 \mathrm{~Hz}$	-/+ 300.00 Hz	
AP37	PID Sleep detection time in seconds	60.0	Sec	
AP38	PID Sleep frequency in Hz	0.00	Hz	
AP39	PID Wake-up level in \%	35	\%	
	Protection Group			
Pr4	Load Duty: $\mathbf{0}$ = Normal Duty ; $\mathbf{1}=$ Heavy Duty	1	0-1	
Pr5	Input/output open phase protection: Bit low = Off ; Bit High = ON (see manual)	0	0-1	
Pr6	Open-phase input voltage band: adjustable (see manual)	40	1-100V	
Pr8	Auto Restart: $\mathbf{0}=\mathrm{No}$; $\mathbf{1}=$ Yes	0	0-1	
Pr 9	Retry Number	0	0-10	
Pr10	Auto Restart time in seconds	0.0	0-60	
Pr20	Overload Trip Select: $\mathbf{0}=$ None; $\mathbf{1}=$ Free-Run; $\mathbf{2}=$ Decel	0	0-2	
Pr21	Overload Trip Level	180	30-200\%	
Pr22	Overload Trip Time	60 sec	0-60 sec	
Pr90	Warning Information			
Pr91	Fault history 1 - $\mathrm{nOn}=$ None or No fault recorded			
Pr92	Fault history 2			
Pr93	Fault history 3			
Pr94	Fault history 4			
Pr95	Fault history 5			
Pr96	Fault history deletion: $\mathbf{0}=$ No; $\mathbf{1}=$ Yes (clears recorded faults in Pr91-Pr95)	0	0~1	

Note: Shaded areas above denote most frequently used parameters

