AC Variable Frequency Drive
WDG2 Quick Start Guide
$0.4-22 \mathrm{~kW}(0.5-30 \mathrm{HP})$ [Three Phase $230 \mathrm{~V} / 460 \mathrm{~V}$

Worldwide Electric Inc.
1-800-8008-2131 Sales Support
1-844-993-738 Tech Support
Website: https:///www.worldwideelectric.net

【 See Product Manual for Complete SAFETY Recommendations This Quick Start Guide is intended For Qualified Personnel with fundamental
knowledge of electricity and electric drive equipment. If you are unfamiliar knowledge of electricity and electrix crivive equipment. II you are unfamiliar
with the instalation
about any

Danger - Indicates an imminently hazardous situation, if not
Danger - Indicates an imminently hazardous
avoided, will result in severe injury or death

- Never remove the product cover or touch the internal printed circuit board -o any contact points when the power is on.
Do not start the product when the cover is open
erminal connections after power off. Before starin and exposing the
est the connections to ensure all DC voltage has been fully discharged.
! Warning - Indicates an potential hazardous situation, if not avoided
- Make sure to install ground connection between the equipment and the motor for safe use.
Do not turn on the power if the product is damaged or faulty
- The inverter becomes hot during operation. Avoid touching the inverter until
- The inverter becomes hot during operation. Avoid touching the inverter un
- becomes cool.
- Do not allow items such as screws, metal chips, debris, water or oil to get
- Do not operate the switch with wet hands.
- Check the data of the protection level for the circuits and devices(Class 1)

Caution - Indicates an potential hazardous situation, if not avoided,
could result in minor injury or property damage

1. Inspect Delivery

Inspect the drive for any damages. If the drive appears contact your supplier
Verify receipt of the correct model by checking the information on the nameplate as shown below. If you have received the wrong model, contact your supplier. The nameplate is on the side of the product. WDG2 0004-2E0FN

WDG20022-2E0FN	
Input	200-240V 3Phase $50 / 60 \mathrm{~Hz}$ HD: 11.8A ND:13.1A
Output	

2. Installatio

The location must be free from any vibration, and the inverter must be installed, A Aon-flammable surface hat can support the inverter's weight
2-2. Air Circulation
The inverter can become very hot during operation. Install the inverter on the fire-resistant or flame-retardant surface with sufficient clearance around the inverter to ali air
to circulate. Illustrated the required installation clearance. 2-3. Side by Side Installation for multiple VFDS

If multiple inverters are installed in one panel,
arrange them side-by-side and remove the top covers. Top covers MUST be removed for proper heat dissipation. Use a flat head screw driver to remove the top covers.
(Din-rail installation is also available)

2-4.Environmental Specification
Inverters are composed by sensitive electronic components. Installed Environment can significantly impact conditions specified in the table below

Items	Operational Specification
Ambient Temperature ${ }^{1}$	Heavy Load: - $10 \sim 50^{\circ} \mathrm{C}$, Normal Load: $-10 \sim 40^{\circ} \mathrm{C}$
Ambient Humidity	Less than 95\%
Storage Temperatire	$-20 \sim 65^{\circ} \mathrm{C}$
Environmental Factors	An Environment free from Corrosive, Flammable Gases, Oil Residue, or Dust
Operation Altitude / Oscillation	Lower than $3,280 \mathrm{ft}(1,000 \mathrm{~m}$) above Sea Level, Less than 1 G ($9.8 \mathrm{~m} / \mathrm{sec}^{2}$)
Air Pressure	$70 \sim 106 \mathrm{kPa}$

1: The ambient temperature is measured at point 2 inches from the inverter surface
3. Cable Selection and Wiring \quad Danger - Turn OFF all Power 3-1. Power and Ground Cable Specification

Load (kW)		Ground		Power IO(mm)		Power IIO(AWG)		$\begin{aligned} & \text { Terminal } \\ & \text { Size } \end{aligned}$
		mm^{2}	AWg	R/S/T	U/V/w	$\mathrm{R} / \mathrm{s} / \mathrm{T}$	U/V/w	
$\begin{gathered} 3 \\ \text { Phase } \\ 200 \mathrm{~V} \end{gathered}$	0.4/0.75	4	12	1.5	1.5	16	16	M3
	1.5/2.2	4	12	4	2.5	12	14	M4
	4	6	10	6	6	10	10	M4
	5.5/7.5	6	10	16	10	6	8	M4
	11	14	6	16	16	6	6	M5
	15	14	6	25	25	4	4	M5
	18.5	14	6	35	25	2	4	M6
	22	14	6	35	35	2	2	M6
Load (kW)		Ground		Power IO(mm ${ }^{\text {a }}$		Power IIO(AWG)		Terminal Size
		mm^{2}	AWg	R/S/T	U/V/w	R/S/T	U/V/w	
$\begin{gathered} 3 \\ \text { Phase } \\ 400 \mathrm{~V} \end{gathered}$	0.4/0.75	2.5	14	1.5	1.5	16	16	M3.5
	1.5/2.2	2.5	14	1.5	1.5	16	16	M3.5
	4	6	10	2.5	2.5	14	14	M4
	5.5/7.5	6	10	10	6	8	10	M4
	11	14	6	10	10	8	8	M5
	15	14	6	10	10	8	8	M5
	18.5	14	6	16	10	6	8	M5
	22	14	6	25	16	4	6	M5

Note

- 200 V Products require Class 3 grounding. Resistance to ground

must be $<10 \Omega$

4. Warning

- Make sure to install ground connection between the equipment Caution
- Apply rated torques to the terminal screws
- Do not connect two wires to one terminal when wiring the power
- Power supply wiring must be connected to R,S,T terminals, NOT U,V,W
- Motor wiring must be connected to $\mathrm{U}, \mathrm{V}, \mathrm{W}$

3-2. Signal (Control) Cable Specifications

Terminals	Without Crimp Terminal Connectors (Bare Wire)		With Crimp TerminalConnectors (Boothlace Ferrule)	
	mm^{2}	R/S/T	mm^{2}	R/S/T
P1~P5/CM/VR/V1/12/AO/24 /A1/B1/C1/A2/C2/S $+/ \mathrm{S}-$	0.8	18	0.5	20

3.3 Cable Wiring
!

- Install the inverter before wiring connections
- Ensure no small metal debris from the wire cut, remained inside inverter Tighten terminal screws to the specified torque value
Do not place heavy objects on top of electric cables to
Only use a grounded powers supply systectric cables to oprevent damages
cot use $T T, T N, ~ I T, ~ o r ~$ corner grounded system with the inverter
When installing the eres
Whitioring (RCM), , use Type B RCDs and Type BRCM
Use residual current Use cables with the largest cross-sectional area for poser terminal wiring Unsure the voltage drop does not exceed 2%
Use coper wires only with $6000,75^{\circ} \mathrm{C}$ rating for the power terminal wiring and $3000,5^{\circ} \mathrm{C}$ rating for the controring terminal wivirin
Separate control circuit wires from the main circuits and other high
veltage circuits.
Check for short circuits or if wiring failure in the control circuit
- Check for short circuits or if wiring failure in the control circuit
- Use shielded cables for control terminal wiring. Failure to do os may
cause malfunction due to interference. If grounding is needed, use cause malfunction duu to introrference. If grounding is needed, use
shielded twisted pair (STP) cables - If need re-wire phir terminals due to the wiring related faults, ensure that
the inverter keypard display is turned off and the charge lam the inverter keypad display is turned off and the charge lamp under the
front cover is off in prior. The inverter may hold a high voltage electric front cover is off in prior. The inverter may
charge longer after the power is turned off

4. Terminal Screw Specification

4-1. Input/Output Terminal Screw Specification

Product (kW)		Terminal Screw size	Temminal Torque(kgtemN(M)
3-Phase 200V	0.4/0.75	R/S/T,U/V/W: M3	R/S/T,U/V/W: 5.1/0
	1.5/2.2	R/S/T,T/V/W: M4	R/S/T,U/V/W: 12.1/1.2
	4	R/S/T,U/V/W: M4	R/S/T, U/V/W: 18.4/1.8
	5.5/7.5	R/S/T,U/V/W: M4	R/S/T: 14.0/1.4, U/V/W: 15.0/1.5
	11/15	R/S/T,U/V/W: M5	R/S/T, U/V/W: 25.34/2.5
	18.5/22	R/S/T,U/V/W: M6	R/S/T, U/V/W: $30.5 / 3$
3-Phase 400V	0.4/0.75/1.5/2.2	R/S/T,U/V/W: M 3.5	R/S/T, U/V/W: 10.3/1.0
	4	R/S/T,U/V/W: M4	R/S/T, U/V/W: 18.4/1.8
	5.5/7.5	R/S/T,U/V/W: M4	R/S/T: 14.0/1.4, U/V/W: 18.4/1.8
	11/15/18/2	R/S/T,	R/S/T, U/V/W: 25.34/2.

4-2. Input/Output Terminal Screw Specification
4-2. Input/Output Terminal Screw Specification

Terminal	Terminal Screw size	Terminal Torque(Kg.tenNm)
24/P1~P5/CM	M2.6	2.5 / 0.22~0
VR/V1/V2/12/AO/CM/S+/S/A1/B1/C1/A2/C2	M2.6	4.0/0.4

WDG2 supports Q1/EG Terminal as a substitute of A2/C2 terminal

(I) Caution

- Tighten terminal screws to rated torque values. Loose screws or Tighten terminal screws to rated torque values. Lo

5. Main Power Connection

5-1. Power Terminal
Turn Off the Power before any wiring!! See the wiring diagrams for the proper three phase application. For pollow the good wiring and grounding practice. Follow the applicable local codes as need.

4 Danger 4

Lethal Voltages are Present. Be sure that all Power is Turned OFF while epraforming the Recommended Power Wiring. Reinstall all
Protective Covers on the WDG2 before Reapolying the Power

Terminal Labels	Name
$\stackrel{\rightharpoonup}{\square}$	Ground Terminal - Earth Grounding
$\mathrm{R}(\mathrm{L} 1) / \mathrm{S}(\mathrm{L} 2) \mathrm{T}(\mathrm{L} 3)$	AC Power Input Terminal-Main Power Supply
P2/N (11~22kW)	DC Link Terminal
P1/P2 (11~22kW)	DC Reactor Terminal (Remove the short-circuit bar)
$\begin{aligned} & \hline \text { B1/B2(0.4~7.5kW) } \\ & \text { P2/B (11~22kW) } \end{aligned}$	Braking Resistor Terminal
U/v/w	

Control Terminal

- Shorting Bar, remove for external DC Reactor Connect $\bullet^{(+)}$Connections, for Brake Connection or units DC Powered - Brake Resistor Connection
$\square-(-)$ Connections for units to be DC Powered-:
P1

6-1. Switches		
Switch		Description
SW1 •		/PNP Mode Selection Switch
SW2 •T		- Terminating Resistor Selection Switch
RJ-45 Connector -		- Connect to Remote I/O or smart copier, connect with RS-485 Communication
6-2. Input Terminals		
Labels	$\begin{array}{\|c\|} \hline \text { Linked } \\ \text { Parameters } \end{array}$	Description / Factory Default
P1 ~ P5	$\begin{array}{\|l\|} \hline \text { IN-65, IN-66, } \\ \text { IN-67, } \mathrm{IN}-68 \\ \text { IN-69 } \end{array}$	- Multi Functions for digital Input Terminals P1:FX, P2:RX, P3: BX, P4: RST, P5: Speed-L
CM	-	- Common Terminal for Analog Terminal inputs/outputs
VR	-	Set Frequency reference via analog V or I - Maximum Voltage Output: 12 VDC - Maximum Current Output: 100 mA
V1	IN-05~16	Set Frequency reference via analog V input - Unipolar: $0 \sim 10 \mathrm{~V}$: 12 V Max - Bipolar: $-10 \sim 10 \mathrm{~V}$: ($\pm 12 \mathrm{~V}$ Max)
11	IN-50~62	Set Frequency reference via analog I input - Input current: $4 \sim 20 \mathrm{~mA}$ Max Input I: 20 mA - Input resistance: 249Ω

6-3. Output / Communication Terminals		
Labels	Linked Parameters	Description / Factory Default
vo		VFD output information of frequency, voltage, current, or DC voltage - Output Voltage: $0 \sim 10 \mathrm{~V}$ - Maximum Output $\mathrm{V} / \mathrm{I}: 12 \mathrm{~V} / 10 \mathrm{~mA}$ - Factory default output: Output frequency
A1/B1/C1	OU-31	Send Fault signal1 when the safety features are activated (AC250V <1 A, DC30V <1 A) - Fault condition: A1 and C1 contacts are connected (B1 \& C1 open connection) - Normal operation: B1 and C1 contacts are connected (A1 \& C1 open connection)

Labels	Linked Parameters	Description / Factory Default
A2/C2	OU-33	Send fault signal2 when the safety features are activated (AC250V <1A, DC30V <1A) - Fault condition: A2 and C2 contacts are open connection - Normal operation: A2 and C2 contacts are connected
Q1		- Open-collector output terminal substitute for A2/C2 fault signal output 2 - DC $24 \mathrm{~V}, 100 \mathrm{~mA}$ or less
S+/s-		- Used to send or receive RS-485 signals

NO	Name	Description / Factory Default
1	7 Segment Display	Displays current operational status and parameter information
2	SET Indicator	LED flashes during parameter configuration, or when the ESC key operates as a multi- functional key
3	RUN Indicator	LED turns on (steady) during an operation, or flashes during acceleration or deceleration
4	FWD Indicator	LED turns on (steady) during forward Run
5	REV Indicator	LED turns on(steady) during Reverse Run
	Key	

RUN	RUN: Used to run the inverter
STOP	STOP/RESET : Used to stop the inverter or resets if a fault or failure occurred

(V) Up/Down: Switches between codes, or increases/ MODE/SHIFT: Moves between groups or moves to the digit on the eft when setting the paramete
Press the MODE/SHIFT key once again on the maximum number of digits to move to the minimum
number of digits

Enter: Switches from the selected state of parameter to the input state. Edits parameters and apply changes
Accesses the operation information screen during Accesses the operation information screen during
failure

Potentiometer: Set the operational frequency
$\square+\begin{aligned} & \text { Press UP \& DOWN ar } \\ & \text { return to main menu. }\end{aligned}$
8. Basic Programming

8-1. Parameter Group Navigation and Setting
[Home Screen]
Press and Release $[\mathbf{\Delta}]$ and $[\mathbf{V}]$ keys a same time to return to home Screen

[Operation Group]

- 14 basic parameters are categorized in oper
- Codes can be accessed by prossing [$\mathbf{1}]$ and $[\mathbf{V}]$ key
- Items can be accessed by pressing [ENT] key.

[Parameter Groups and Settings]

- Groups can be accessed with the [MODE/SHIFT] key.
- Group access in the other direction can be accessed by
pressing the [MODE/SHIFT] key for more than 1sec.
- Parameters can be accessed with $[\boldsymbol{\Delta}]$ and $[\mathbf{\nabla}]$ key
- Press the [ENT] key to change the setting of parameter
- Press the [ENT] twice to save the settings.

Group	Dis- play	Description / Factory Default	

8-2. Confirm Motor Direction-Bump Test

This step explains how to check motor direction by running the motor at a low speed via the keypad. Verify that the power and motor wiring matches the previous step and
covers are installed before applying power.
8-3. Speed Setting
At the very first power up, the display will look like the
" 0.00 ". This indicates the frequency reference of 0.00 Hz .

Press [ENT] key
Set LED illuminates Press[MODE/SHIFT]
$\times 3$ to shift over the digits

Press [$\mathbf{\Delta}$] key until 10.00 is displayed. Then Press [ENT] $\times 2$

8-4. Settina Command Source

Press [$\mathbf{\Delta}$] arrow Press [$\mathbf{\nabla}$] key to key 4 times until change setting to 0 . drv is displayed.

Then press [ENT] to display setting. [ENT] key twic save the setting.
※This activates th RUN/STOP keys as th
command source

To return to the frequency display use the [ESC] key by pressing the following $[\mathbf{\Delta}]+[\mathbf{\nabla}]$,
$[\mathbf{\Delta}]+[\mathrm{MODE} / \mathrm{SHIFT}]$ A $]+[$ MODE/SHIFT $]$ $\mathbf{\nabla}]+[\mathrm{MODE} / \mathrm{SHIFT}]$

Confirm it is safe to run the motor at low speed. When ready, press [RUN] key to run the motor.

- The display will briefly show the output frequency of the VFD until it reaches 10 Hz .
Watch the motor shaft to verify the rotation
- Press the [STOP/RESET] key stop.

If motor direction is incorrect, stop the motor with the [STOP/RESET] key, and power down the VFD.

\triangle Danger \triangle

Wait at least 5 minutes to let the VFD capacitors discharged

- To change motor direction - swap any two OUTPUT leads between the VFD and the moto
Verify correct rotation via the previous steps.
8-5. Start/Stop and Speed Command Settings

[Run Command Source Setting]

	2-Wire Control (1:Fx/Rx-1)	No	Name
dru		0	Keypad
		1	FX/RX-1
		2	FX/RX-2
围	\square	3	INT 485
		4	Field Bus

- Press [$\mathbf{\Delta}$] arrow key three times until dry is displayed.
- Then, Press \{ENT] to display the value.
[Frequency Source Setting]

NO	Name
0	KeyPad-1
1	KeyPad-2
2	V1
3	
4	V0
5	12
6	IT 485
8	Field Bus

- Press [$\mathbf{\Delta}$] arrow key four times until frequency is displayed. - Then, Press [ENT] to display the value

AC Variable Frequency Drive WDG2 Quick Start Guid

Control VFD speed by an external Analog Signal
from PLC or other devic

shown in the diagram

- V1 = Wiper
- CM = Common

PLC or Controller Wiring (2: V1, 0-10V)
Speed control by
$4 \sim 20 \mathrm{~mA}$ signal

- Set frequency $=>5$

A A
$12=+$ Signal
CM $=$ Common

Built - in Potentiometer (4: V0)

Built - in Potentiometer (4: \mathbf{V})							
Control speed by adjusting the built- in Potentiometer							

4) Acceleration and Deceleration Time Setting

- Press [$\mathbf{\Delta}]$ key from the main display (0.00) until Acc is displayed.
- Press [ENT] key to display the current setting.
- Use [$\mathbf{\Delta}$] and $[\mathbf{V}]$ key to increase and decrease the value
- Use [MODE/SHIFT] key to move the cursor over to the next digit.
- Press [ENT] 22 to save the setting.

Acc will be displayed again indicating the parameter change has 5) Program Values from Motor Nameplate

Grp	Code	Name	Setting
dr	14	Motor Capacity	Motor Capacity Setting
bA	11	Poles	Motor Capacity (2 $\sim 12)$
	12	Motor Rated Slip	Motor Capacity Setting (RPM)
	13	Motor Rated Current	Motor Capacity Setting
	15	Motor Voltage	Motor Capacity Setting

- HP to kW Conversion Chart

Grp	$1 / 4$	$1 / 2$	1	2	3	5	7.5	10	15	20	25	30
kW	0.2	0.4	0.75	1.5	2.2	4.0	5.5	7.5	11	15	18.5	22

- Motor Poles to Synchronous RPM Conversion Chart P10

Poles	2		4		6		8	
HZ	50	60	50	60	50	60	50	60
RPM	$\mathbf{3 0 0 0}$	$\mathbf{3 6 0 0}$	1500	1800	1000	$\mathbf{1 2 0 0}$	750	900

** If the motor nameplate is 1750 , set bA11 $=4$ and bA12 $=50$

8-7. Multi-Step Frequency (Preset Speed) Setting

- Assign multi-step frequency to Digital Inputs

- Digital input of Speed $-L / M / H$ function as a binary sequence that defines the different multi-steps from $1 \sim 7$ Output (ex: P3=Speed-L, P4=Speed-M, P5=Speed-H) Frequency

\section*{| Speed | P3 | P4 | P5 |
| :--- | :--- | :--- | :--- |
| 0 | | | |}

Description

Speed	P3	P4	P5	$\begin{array}{c}\text { Speed Setting according to the Source } \\ 0\end{array}$
0	-	-	$\begin{array}{c}\text { Setting in Freq. }\end{array}$	
	V	-		

1	V	-	-
St-1_Multi-step speed frequency 1			

Caution: "SAFETY CONSIDERATIONS" for items noted below:

1) Power on Run

- For an automatic start after a power loss or soon after the invert is powered up, set Ad10_Poweron Run =1

2) Automatic Restart

- Automatic restart function is only operable with ($\mathrm{Fx} / \mathrm{Rx}-1$ or 2).
- Settings: Pr8 Auto Restart select=1, Pr9 = Restart Attempts: Pr10 Restart delay time in Seconds

3) Speed Search

- To catch a spinning motor, after a fault reset, eanble speed search setting

Grp						Code	P4	Setting	Description
In	65	Speed Search Selection	$-1-$ (0010)	Initialization after a fault					

P11 \begin{tabular}{|l|l|l|l|l|}
\hline Group \& Operation Parameters \& Initital \& Vange \& New

\hline 0.00 \& \&

\hline

\hline 0.00 \& Target Frequency VFD operates Motor \& 0.00 \& $0 \sim 400 \mathrm{~Hz}$

\hline

\hline 0.00 \& Target Frequency VFD operates Motor \& 0.00 \& $0 \sim 400 \mathrm{~Hz}$

\hline ACC \& Acceleration Time in Seconds \& 5.0 \& $0 \sim 60$

\hline

\hline ACC

\hline dEC

\hline
\end{tabular}

Deceleration Time in Seconds \qquad	5.0	$0 \sim 600$
10.0	$0 \sim 600$	

drv 0: keypad, 1: Fx/Rx-1, 2:Fx/Rx-2, 3: Int 485, 4: Field Bus ${ }^{* *}$ drv appears as dru on keypad screen

| Frequency Reference Source Setting | 0 | $0 \sim 8$ | |
| :--- | :--- | :--- | :--- | Frq $\begin{aligned} & \text { 0: Keypad-1, 1: Keypad-2, 2: V1(0-10 V DC), , : Keypad pot/ } \\ & \text { potentiometer, } 5: 1 \text { Current }(4-20 \mathrm{~mA}) \text {, 6: Int485, 8: Field Bus }\end{aligned}$

| St1 | Multi-step Speed Frequency $1(\mathrm{~Hz})$ | 10.00 | $0 \sim$ Max f | |
| :--- | :--- | :--- | :--- | :--- | | St2 | Multi-step Speed Frequency $2(\mathrm{~Hz})$ | 20.00 | $0 \sim$ Max f | |
| :--- | :--- | :--- | :--- | :--- | $\begin{array}{lllll}\text { St3 } & \text { Multi-step Speed Frequency } 3(\mathrm{~Hz}) & 30.00 & 0 \sim \text { Max f }\end{array}$ Cur Output Current

Rpm	Motor Revolution per Minute (RPM)

dCL Inverter DC Bus Voltage
VOL Inverter Output Voltage
nOn Out of Order Signal (Fault)
drC Select Rotation of Motor
: Forward, r:reverse

drg	Control Mode	0	$0 \sim 4$	

dr9 0: V/F, 2: Slip Compensation, 4: IM Sensorless

dr14	Motor kW rating: $\mathrm{HP} \times 0.746=\mathrm{kW}$		$0.5 \sim 30$	
	Torque Boost	0	$0 \sim 1$	

dr15	Torque Boost
	0: Manual, 1: Auto

	Base Frequency (Hz)	60.00	$30^{\sim} 400$	
		Se		

dr18 | Set to Motor Hz Nameplate Value - Typically 60 Hz |
| :---: |

dr19	Start Frequency (Hz)	0.50	$0.01 \sim 10$.	

dr20 Max Frequency: $40.00 \sim 400.00 \mathrm{~Hz}$ in V/f, 60.00 40~400
dr8 Select Monitor Code $|0| 0 \sim 3 \mid$
dr81 $\frac{\text { Select Output Voltage, 1: Output kW, 2: TQ, 3: PID feedback }}{}$
Changed Parameters

dr89	Changed Parameters
O: View All, 1: View Changed	

	0	$0 \sim 1$

Smart Copy

| dr91 | $0 \sim 5$ | |
| :--- | :--- | :--- | :--- |
| $0:$ None 1:Sm | 0 | $0 \sim 5$ |

5: Remote Download,

dr92 | Parameter Save | |
| :--- | :--- |
| | 1. Parameter Sav |

dr93 Parameter Initialize (Total 14 Selections) | | 0 | $0 \sim 14$ | |
| :--- | :--- | :--- | :--- |
| | $0 \cdot N 0,1: A l l$ | | |

dr93 0 0: NO, 1: All Grp, 2: dr Grp, 3: bA Grp, 4: Ad Grp, $5 \sim 14$

Basic Group

Default Range | New |
| :--- |

bA	Basic Group	Default	Range	New
bA4	$2^{\text {nd }}$ Command Source	1	0~4	
	0: Keypad; 1: FX/RX-1; 2: FX/RX-2; 3: Int 485; 4: Field Bus			
bA5	$2^{\text {nd }}$ Frequency Source	0	0~8	
	0: Keypad - 1, 1:Keypad-2, 2: V1, 5: 12, 6: Int 485			
bA7	V/F Pattern	0	0~3	
	0: Linear, 1: Square, 2: User V/F, 3: Square 2			
bA9	Time Scale for Acc/Dec Ramps	1	0~2	
	0: $0.01 \mathrm{Sec}, 1: 0.1 \mathrm{Sec}, 2: 1 \mathrm{Sec}$			
bA10	Input Power (base) Frequency (Hz)	0	60/50	
	$0: 60 \mathrm{~Hz}, 1: 50 \mathrm{~Hz}$			
bA11	Motor Pole Number	4	$2 \sim 48$	
	2Pole: 3600RPM, 4Pole:1800RPM, 6 Pole:1200 RPM, 8 pole:800			
bA12	Motor Rated Slip			
	Use Motor Nameplate RPM			
bA13	Motor Rated Current			
	Use Motor Nameplate Full Load Amps			
bA14	Motor No Load Current in Amps			
	Typical Value of 30% of FLA			
bA15	Motor Rated Voltage (Voltz)	0	100-480	
bA19	VFD AC Input Power Voltage (Voltz)		240/480	
bA20	Auto Tuning	0	0~6	
	0: None, 1: All Rotation, 2: All Static, 3: Rotate Lsigma, 6: Tr(Static)			
Ad	Advanced Group	Default	Range	New
Ad1	Acceleration Pattern	0	${ }^{\sim} 1$	
	0: Linear; 1: s-Curve			
Ad2	Deceleration Pattern	0	0~1	
	0: Linear, 1:S-Curve			
Ad8	Stop Mode	0	0~4	
	0: Decel, 1: DC Brake, 2: Free Run, 3: Reserve, 4: Power Braking			
Ad9	Run Prevent	0	0~2	
	0: None, 1: FWD Prevent, 2: REV Prevent			
Ad10	Starting Power-On	0	$0 \sim 1$	
	0 : NO, 1: Yes: SAFETY Warning - See Full Manual before Using			
Ad24	Frequency Limit Enable	0	0~1	
	0: NO, 1: Yes: Must Enable to set ADV25 \& ADV26			
Ad25	Frequency Low Limit (Hz)	0.50	0~400	
Ad26	Frequency High Limit (Hz)	60.00	0.1~400	
	Minimum Frequency to Maximum Frequency			
Ad64	Cooling Fan Control	0	0~2	
	0: During Run, 1: Always On, 2; Temperature Control			
Ad74	Regen Evasion Enabled	0	$0^{\sim 1}$	
	0 : No, 1 : Yes			
	Regen Evasion Level			
Ad75	Set 10vdc above VFD bus value When running the motor.	is po	don, b	not
Ad76	Compensation Frequency Limit (Hz)	1.00	0.00~10.	
	Above VFD reference Value: 10.00 is Common			
Ad77	Regen Evasion P-Gain (\%)	50.0	0.0~100	
	How MUCH change takes place: $50.00 \sim 100.00$ is Common			
Ad78	Regen Evasion I-Gain (mS)	500	20-30000	
	How FAST Change takes place: $20 \sim 500 \mathrm{~ms}$ is Common			
Cn	Control Group	Default	Range	New
Cn4	Carrier Frequency Select (kHz)	3	1.0~15.0	
	Speed Search Operation (bit Level)	0000	0000 1111	
Cn71	0001: Selects the speed search functi 0010: Initialization	at aclera	ation,	

In	Input Terminal Group	Default	Range	Ne
In1	Frequency for Maximum Analog Input	60.00	O~Max F	
In5	V1 Input Voltage Display:	0.0	0.0~10.0	
	Monitor Input Signal at V1 Terminal			
$\ln 10$	V1 Maximum Input Voltage (volts)	10.00	-12~+12	
	Used to Scale V1 Analog Input V . When in 06 is 1 (bipolar), $\mathrm{V}=-12$			
In16	Change Rotation Direction of V1	0	0~1	
	0 : No, 1 : Yes			
In50	12 Input Current Display	0.0	0~20.00	
	Monitor Input Signal at 12 Terminal			
In55	12 Maximum Input Current Display	20.00	0~20.00	
	Used to Scale I2 Analog Input (mA)			
In65	P1 Define Digital Input 1	1	0~52	
	0: None, 1: FX, 2: RX, 3: RST, 4: Ext Trip, 5:BX, 6:Jog			
In66	P2 Define Digital Input 2	2	0~52	
	7: Speed-Low, 8: Speed-Medium, 9: Speed-High, 13:RUN Enable			
In67	P3 Define Digital Input 3	5	0~52	
	14:3-Wire, 15:2 ${ }^{\text {nd }}$ Source, 17: Up, 18: Down, 20:Up/Down Clear			
In68	P4 Define Digital Input 4	3	0~52	
	23:PID Open Loop, 24: PID Gain2, 27: U/D Enable, 34:PreExite			
In69	P5 Define Digital Input 5	7	0~52	
	38:Timer In, 40: Disable Aux Ref, 46: FWD Jog, 47: REV Jog			
	49:XCEL-H, 51: Fire Mode, 52: KEB-1 Select			
In87	Digital Inputs: (5bits) NO/NC Selection	00000	0~11111	
	O(down): Normally Open, 1(UP): Normally Closed			
In90	Digital Input Status; Troubleshooting Tool	0	0~1	
	0: Off (Normally Open), 1: On (Normally Closed)			
In99	SW1 (NPN/PNP) Status	0	$0^{\sim 1}$	
	0: Segment Down for NPN, 1: Segment Up for PNP			
ou	Output Terminal Group	Default	Range	New
OU1	Analog Out (AO) 1 Assignment	0	0~15	
	0: Freq, 1:Out Amps, 2:Out Volt, 3:DC Bus, 4:Torque, 5:Out Pwr 8: Target Freq, 9: Ramp Freq,10: Speed Fdb, 12: PID Reference Value, 13: PID Fdk Value, 14: PID Output, 15: Constant			
OU6	A01 Monitor Signal (\%)	0.0	0~1000	
OU31	Relay 1	29	0~44	
OU33	Relay 2	14	0~44	
	0:None, 1:FDT1, 2:FDT2, 3:FDT-3, 4:FDT-4, 5:OL, 6: 1OL, 7:Under Load, 8: Fan Warning, 9: Stall, 10: OV, 11:UV, 12: Over Heat, 13: Lost Command, 14: Run, 15: Stop, 16: Steady, 17: Inverter Line, 18: Comm Line, 19: Speed Search, 21: Regeneration, 22: Ready, 23: Zero Speed, 28: Timer Out, 29: Trip, 31: DB Warn \% ED, 34:On/Off Control, 35: Brake Control, 37: Fan Exchange, 38: Fire Mode, 40: KEB Operating, 41: Pre Overheat, 42: Minor Fault, 43: Torque Detect 1, 44: Torque Detect 2			
OU41	Relay 1 and Relay 2 Output Status	00	00-11	
	0: Off, 1: On			
OU52	Digital Output NO/NC Selection- Relay 1,2	00	00-11	
	O(down): Normally Open, 1(up): Normally Closed			
Ou57	Detection Frequency (Hz)	30.00	0^{\sim} Max	
CM	Communication Group	Default	Range	New
CM1	Built-in Communication Inverter ID	1	1~250	
CM3	Built-in Communication Speed	3	0~3	
	0: 1200 bps, 1:2400 bps, 2: 4800 bps, 3: 9600 bps6 k6, 4: 19200 bps, 5: 38400bps, 6: 56000bps, 7: 115200bps			

AP	Application Group	Default	Range	New
AP 1	Application Function Selection	1	0^{\sim}	
	0: None, 1: Reserved, 2: Process PID			
AP16	PID Output Monitor (\%)	0.00		
AP17	PID Reference Monitor (\%)	0.00		
AP18	PID Feedback Monitor (\%)	0.00		
AP19	PID Reference Setting (\%)	50	$-100 \sim 100$	
	Range -100 ~ +100			
AP20	PID Reference Source	0	0~7	
	0: Keypad, 1: V1 Volts, 3: Keypad, 4: 12 Current, 5: Int 485,7:FieldBus			
AP21	PID Feedback Source	0	0~6	
	0: V1 volts, 2: V0, 3: 12 Current, 4: $\operatorname{lnt} 485,5$: Fieldbus			
AP22	PID Proportional- P Gain $0 \sim 1000 \%$	50.0	0~1000.	
AP23	PID Integral- I Gain (\%)	10.0	0~200.0	
AP24	PID Differentiation - D Time (mS)	0	0~1000	

Pr	Protection Group	Default	Range	New
Pr4	Load Duty	1	0~1	
	0: Normal Duty; 1:Heavy Duty			
Pr5	Input/ Output Open Phase Protection	0	00~11	
	Bit Low: Off, Bit High: On (See Manual)			
Pr6	Input Voltage Range during Phase Loss,V	15	1~100	
	During Open-Phase; Adjustable 1-100 volts			
Pr8	Select Start at Trip Reset	0	0~1	
	0: NO, 1: Yes Safety Caution- VFD my start automatically			
Pr9	Retry Number	0	0~10	
	Auto Restart Number of Attempts			
Pr10	Auto Restart Delay Time (Seconds)	1.0	0.0~60.0	
Pr20	Overload Trip Select	1	0~2	
	0: None, 1: Free-Run, 2: Decel to Stop			
Pr21	Overload Trip Level (\%)	180	30~200	
	Percent of Motor FLA in BA13			
Pr22	Overload Trip Time (Sec)	60.0	0~60.00	

10. Common Installation Equipment

11. Typical Single-Phase Installation

1) VFD is twice the HP rating of the Motor HP
2) Line reactor recommended to protect VFD and lower harmonics
3) Line power to VFD

| \% ${ }^{5}$ |
| :---: | at $\mathrm{R}(\mathrm{L} 1)$ and $\mathrm{T}(\mathrm{L} 3)$

12. Drive Control by Digital Input P1 - P5 and 0-10vDC Potentiometer
12-1. Terminal Control \& Confiquration

2-2. Input Designations

$$
\text { - P1 FX: IN-65 = } 1
$$

- P1 InOut: F= Forward and $X=$ Wired to Terminal Strip
- P2 Input: $\mathrm{R}=$ Reverse and $\mathrm{X}=$ Wired to Terminal Strip

12-3. Keypad Control
Typical VFD Control Configurations
[Control VFD from Keypad]

- Drv $=0$ (keypad RUN / STOP)
- $\mathrm{Frq}=4$ (keypad Potentiometer) OR
- $\operatorname{Frq}=0$ (keypad ARROWS)

12-4. Terminal Control

[Control VFD from digital inputs P1 ~ P5]

- Drv $=1$ (terminal strip P1 START/FX)

13. Troubleshooting Fault Trips
 See the full manual

14. Frequently Asked Questions (FAQ)

Q1:The motor does not rotate \& output current is too high at START Cause: The load is too high.
Solution: Utilize a manual/auto torque boost and change parameters
shown below:

	Parameter	Instruction
1	Manual Torque Boost	Slightly increase the forward boost dr-16 or reverse boost dr-17. Torque boost set too high may trigger an IOL fault
2	Auto Torque Boost	Set dr-15 to 1; then, adjust values in dr-26 ~ 28 (recommended over Manual Boost)
3	Start Frequency	Slightly increase start frequency to increase torque: dr-19(05 -> 1.0-> $1.5 \rightarrow 2.0 \mathrm{~Hz}$)
4	User V/f Pattern	bA-07 = 2(User V/f) A custom 4-step User pattern is defined in bA41 through bA48. Goal is to match load requirements

Q2: Motor makes an odd humming sound

Q2: Motor makes an odd humming sound
Solution: Slightly increase or decrease the carrier frequency in $\mathrm{Cn}-04$. Q3:When driver operates motor, my Earth-Leakage Circuit Breaker Cause: The ELCB will disconnect the power if leakage current flows to earth ground when drive operates the motor.
Solution:
S1: Connect the drive to the panel grounding terminal
S2: Confirm ground resistance is < 1000 for 230 V or < 300 for 460 V S3: Confirm breaker amp rating is proper for the attached drive.
S4: Reduce the carrier frequency in Cn -04.
S5: Keep cable distance from the drive to motor short as possible.
Q4: How do I reset the drive back to factory default settings? Solution: Set dr-93 to 1(All groups) and press the [ENTER] twice. Then dr-93 is displayed again when the factory default is done.
Q5: How do I adjust the time it takes the motor to speed up or down? Solution: Adjust the acceleration time in ACC and deceleration time in

Q6: How do I prevent the drive from tripping on an OV faul (overvoltage) while the motor is ramping down? Solution:
S1: Increase the deceleration time in dEC
S2: Set Stop Mode Ad8 $=2$ (Free Run), Motor will coast to stop.
S3: Activate flux S4: A DB resistor may be required to stop the inertia of the load.
Q7: How do I prevent the drive from tripping on an OLT(overload) while the motor is ramping up or down?
Solution: Confirm motor Full Load Amps in bA-13 and motor overload parameter setting in Pr-20(Overload trip selection), Pr-21(Overload trip level), and Pr-22(Overload trip time). Adjust if needed.
Q8: Does the drive create harmonics and are they a problem? All 6-pulse drives create 5th and 7th harmonic frequencies. Dependin
upon the application, harmonic current can cause problems such as transformer heating, breaker tripping, blown fuses, or interference with other communication devices installed near the drive.
Solution:
S1: Lowering the carrier frequency in $\mathrm{Cn}-04$ to a lower value may help S2: Line reactors, passive filters or active filters may be required

